AN INTRODUCTION TO LAKE AND RESERVOIR WATER QUALITY MODELING

A Short Course Presented at the Arkansas Water Resources Center Annual Spring Conference March 25, 1996

Kenneth H. Reckhow, Ph.D.
Director, Water Resources Research Institute
University of North Carolina
Raleigh, North Carolina

MSC-198

Arkansas Water Resources Center
112 Ozark Hall
University of Arkansas
Fayetteville, Arkansas 72701
Lake and Reservoir Water Quality Modeling
Kenneth H. Reckhow
March 25, 1997

Topics

Introduction and overview; objectives and outline for lecture (questions and discussion encouraged)

2. What’s the problem? What do we care about? – objectives and attributes

3. Assessment and prediction - scientific analysis in support of decision making – models

4. Model selection criteria

 Mechanistic models (WASP5)

6. Bathtub model

7. Statistical/empirical models (Vollenweider loading criterion; Eutromod)

8. Special topics (as time permits: embayment modeling, uncertainty, trend analysis)
Useful Internet and E-mail Addresses

US EPA (WASP5)
Center for Exposure Assessment Modeling (Athens, GA)

US Army Corps of Engineers
Waterways Experiment Station (Vicksburg, MS)
 http://www.wes.army.mil/Welcome2.html
Bathtub Model: contact Dr. Robert Kennedy at: kennedr@ex1.wes.army.mil

Eutromod
North American Lake Management Society (NALMS)
 http://www.nalms.org/bkstore/bkstore.htm
K. Reckhow
 http://www2.ncsu.edu/ncsu/CIL/WRRI/ken's_page.html
 ken_reckhow@ncsu.edu
 reckhow@duke.edu

General
Old Dominion University, Department of Civil and Environmental Engineering
 (Dr. Jaewan Yoon)
 http://www.cee.odu.edu/cee/model/model.html
Model Selection Criteria

- the model is appropriate and comprehensive
- prediction uncertainty is acceptable
- cost and ease of use are reasonable

Model Descriptors/Approaches

- **Mechanistic (process oriented)**

 Conservation of mass (mass balance):

 \[V \frac{dP}{dt} W QP \sigma PV \]

- **Empirical (statistical)**

 Statistical (parameter) estimation (e.g., regression)

 \[Chla = 0.0731P^{1.449} \]
Manage Water Quality in Lake Sunapee

Minimize Cost
- Support Local Economy
 - Costs to NH
 - Property Taxes

- Maintain Desirable Aesthetic Conditions
 - Meet Water Quality Standards
 - WQ Standards
 - Tourism Benefit to Local Economy

- Maintain Water Clarity
 - Percent Shoreline With Noticeable (Slimy) Benthic Growths of Organisms
 - Secchi Disk Depth

- Reduce Aquatic Weed Growths
 - Areal Extent of Aquatic Weed Growth

- Maintain Recreational Fishery
 - Fish Quantity and Quality

Minimize Restrictions on Property Rights
- Minimize Restrictions on Watershed Land Use
 - Minimize Restrictions on Use of Shore Lands
 - Limitations on Lawns, Fertilizers, etc.

- Minimize Restrictions on Boat Use
 - Limitations on Land Use
 - Limitations on Marinas and Use of Private Boats
Figure 1.3.2. Model segmentation

Figure 1.4.1 EUTRO4 state variable interactions
WASP5 Phytoplankton Growth Equations

\[\text{Growth Rate} = G_{\text{max, Temp}} G_{\text{Nutrients}} G_{\text{Light}} = G_{\text{max}}(T) G(I,t) G(N) \]

\[G_{\text{max}}(T) = G_{\text{max}}(20 \, ^{\circ}C) \Theta_1 (T-20) \]

where:

\[\Theta_1 = \text{temperature coefficient, unitless} \]

\[G(I,t) = \frac{e}{K_e D} \left[\exp \left\{ \frac{I_o}{I_s} \exp(-K_e D) \right\} - \exp(-\frac{I_o}{I_s}) \right] \]

where

\[I_s = \frac{G_{\text{max}}(T) \Theta_c e}{\Phi_{\text{max}} K_c f_u} \]

where

- \(D \) = the average segment depth, m
- \(\Phi_{\text{max}} \) = the quantum yield, mg carbon fixed per mole of light quanta absorbed
- \(K_e \) = the total extinction coefficient, computed from the sum of the non-algal light attenuation, \(K_e' \), and the self-shading attenuation due to ambient phytoplankton population, m\(^{-1}\)
- \(K_c \) = the extinction coefficient per unit of chlorophyll, m\(^2\)/mg chlorophyll \(\text{a} \)
- \(f_u \) = units conversion factor (0.083, assuming 43% incident light is visible and 1 mole photons is equivalent to 52,000 cal) mole photons/m\(^2\)-ly
- \(I_o \) = the incident light intensity just below the surface, assumed to average 0.9 I, ly/day
- \(I_s \) = the saturating light intensity of phytoplankton, ly/day
- \(\Theta_c \) = the ratio of carbon to chlorophyll in the phytoplankton, (mg carbon/mg chlorophyll \(\text{a} \))
- \(e \) = the base of natural logarithms (2.71828), unitless

\[G(N) = \text{Min} \left(\frac{\text{DIN}}{K_{\text{mN}} + \text{DIN}} + \frac{\text{DIP}}{K_{\text{mP}} + \text{DIP}} \right) \]

\(\text{DIN, DIP} = \text{dissolved nutrient concentrations} \)

\(K_{\text{mN}}, K_{\text{mP}} = \text{Michael-Menten parameters} \)
Figure 4.2. Control pathways in empirical eutrophication models developed for CE reservoir applications
Figure 4.9. Model segmentation for Lake Keystone, Oklahoma, application
BATHTUB Chlorophyll Equations

Model 1: N, P, Light, Flushing Rate
\[X_{pn} = \left[P^{-2} + \frac{(N-150)}{12} \right]^{-0.5} \]
\[B_x = \frac{X_{pn}^{1.33}}{4.31} \]
\[G = Z_{mix} (0.14 + 0.0039 \cdot F_s) \]
\[B = CB \cdot B_x / [(1 + 0.025 \cdot B_x \cdot G) (1 + Ga)] \]

Model 2: P, Light, Flushing Rate [default]
\[B_p = \frac{P^{1.37}}{4.88} \]
\[G = Z_{mix} (0.19 + 0.0042 \cdot F_s) \]
\[B = CB \cdot B_p / [(1 + 0.025 \cdot B_p \cdot G) (1 + Ga)] \]

Model 3: P, N, Low-Turbidity
\[B = CB \cdot 0.2 \cdot X_{pn}^{1.25} \]

Model 4: P, Linear
\[B = CB \cdot 0.28 \cdot P \]

Model 5: Jones and Bachman (1976)
\[B = CB \cdot 0.081 \cdot P^{1.46} \]

where:

B = chlorophyll a concentration (ug/l)
P = total phosphorus concentration (ug/l)
N = total nitrogen concentration (ug/l)
CB = calibration factor for chlorophyll a
Zmix = mean depth of mixed layer (m)
F_s = summer flushing rate (yr^-1)
a = nonalgal turbidity (m^-1)
Figure 4.7. Phosphorus, chlorophyll a, and transparency relationships for CE reservoirs
FIG. 8. Chlorophyll and Total Phosphorus Concentrations in the Lake Okeechobee Littoral Zone (May - October Data).
FIG. 3. Next year’s mean lake [P] as a function of (P_i, T_w, z) for Okeechobee.

* i.e., predicted from the three-factor multiple regression model
Chl $a = 0.0731P^{1.449}$
Lake Models

Input-Output Models for Nutrients

Mass balance (conservation of mass):

Accumulation = Inputs - outputs ± Reactions

for phosphorus:

\[\frac{dP}{dt} = W - QP - kPV \]

solution:

\[P = \frac{W}{Q+kV} \left[1 - e^{-(\frac{1}{\tau+k})t} \right] + P_ie^{-(\frac{1}{\tau+k})t} \]

steady-state solution:

\[P = \frac{W}{Q+kV} = \frac{P_{in}}{1+k\tau} \]

other similar expressions:

\[P = \frac{L}{\nu_s+q_s} = P_{in}(1 - R_P) \]

V=lake volume
P=phosphorus concentration
W=phosphorus mass loading
Q=volumetric water load
k=first order reaction rate
\(\tau \)=water residence time
\(P_{in} \)=influent
p=concentration
\(\nu_s \)=apparent settling
Eutromod Equations for Arkansas Lakes

Total Phosphorus (mg/l)

\[
\log_{10}(P) = \log_{10}\left[\frac{P_{in}}{1 + k \tau} \right]
\]

where: \(k = 10.77 \tau^{-0.61} z^{0.01} P_{in}^{0.82} \)

Total Nitrogen (mg/l)

\[
\log_{10}(N) = \log_{10}\left[\frac{N_{in}}{1 + k \tau} \right]
\]

where: \(k = 0.46 \tau^{-0.75} z^{0.22} N_{in}^{0.95} \)

Chlorophyll a (ug/l)

\[
\log_{10}(chla) = 1.99 + 0.5 \log_{10}(\hat{P}) + 0.23 \log_{10}(\tau) - 0.351 \log_{10}(z)
\]

Secchi Disk Depth (m)

\[
\log_{10}(SD) = -1.32 - 0.66 \log_{10}(\hat{P}) + 0.47 \log_{10}(z)
\]

where:
- \(\tau \) = water residence time
- \(z \) = mean depth
- \(\hat{P} \sim \) “predicted”
- \(P_{in} \sim \) influent
EUTROMOD
Version 2.50
by
Kenneth H. Reckhow
Duke University
Durham, NC 27706
1991

A watershed/lake modeling procedure for eutrophication management, with region-specific models and with emphasis on uncertainty analysis.

Enter two letter (all caps) state postal code (e.g., NY) in box, identifying the location of the lake.

CO

Hit ALT-X to continue; this selects the region-specific lake models.
Figure A.

Eutromod:
Map of Screen Worksheets

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>Surface water runoff</td>
<td>USLE</td>
<td>Land areas</td>
<td>Lake depth</td>
</tr>
<tr>
<td></td>
<td>Precipitation USLE</td>
<td>USLE</td>
<td>Septic tanks Treatment plants</td>
<td>Detention time, etc. Water runoff</td>
</tr>
<tr>
<td>40</td>
<td>Phosphorus concentrations in inputs</td>
<td>Nitrogen concentrations in inputs</td>
<td>Attenuation zones for nutrient trapping</td>
<td>Calculation tables</td>
</tr>
<tr>
<td>60</td>
<td>Phosphorus-total loading by land use category</td>
<td>Nitrogen-total loading by land use category</td>
<td>Attenuation zones for nutrient trapping</td>
<td>Calculation tables</td>
</tr>
<tr>
<td>80</td>
<td>Lake response predictions (uncertainty due to hydrologic variability)</td>
<td>Lake response predictions (uncertainty due to model error)</td>
<td>Attenuation zones for nutrient trapping</td>
<td>Calculation tables</td>
</tr>
<tr>
<td>100</td>
<td>Allowable nutrient loading (chlor a goal)</td>
<td>Allowable nutrient loading (chlor a, P goals)</td>
<td>Calculations-dissolved nutrients</td>
<td></td>
</tr>
<tr>
<td>120</td>
<td>Allowable nutrient loading (TSI goal)</td>
<td></td>
<td>Calculations-sediment-attached nutrients</td>
<td></td>
</tr>
<tr>
<td>140</td>
<td></td>
<td></td>
<td>Calculations-total nutrients</td>
<td></td>
</tr>
</tbody>
</table>

1 Letters across the top of the table and numbers along the left side identify cells in the spreadsheet (e.g., the intersection of "T" and "60" is cell T60).
Surface Water Runoff & Soil Loss

Universal Soil Loss Equation

<table>
<thead>
<tr>
<th>Land Use Category</th>
<th>LS factor</th>
<th>C factor</th>
<th>P factor</th>
<th>Xi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agriculture1</td>
<td>0.3</td>
<td>0.2</td>
<td>0.5</td>
<td>5.263</td>
</tr>
<tr>
<td>Agriculture2</td>
<td>0.4</td>
<td>0.03</td>
<td>0.3</td>
<td>0.631</td>
</tr>
<tr>
<td>Agriculture3</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Agriculture4</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Agriculture5</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Forest</td>
<td>0.9</td>
<td>0.001</td>
<td>0.2</td>
<td>0.031</td>
</tr>
<tr>
<td>Urban1</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Urban2</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Feedlots</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Other1</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Other2</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Other3</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

X (total soil loss) = 2.12098961 t/ha (area-weighted average)
Phosphorus Concentration Estimates

<table>
<thead>
<tr>
<th>Land Use Category</th>
<th>Dissolved</th>
<th>Sed-Attach</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agriculture1</td>
<td>0.07</td>
<td>220</td>
<td>*****</td>
</tr>
<tr>
<td>Agriculture2</td>
<td>0.07</td>
<td>220</td>
<td>*****</td>
</tr>
<tr>
<td>Agriculture3</td>
<td>0</td>
<td>0</td>
<td>*****</td>
</tr>
<tr>
<td>Agriculture4</td>
<td>0</td>
<td>0</td>
<td>*****</td>
</tr>
<tr>
<td>Agriculture5</td>
<td>0</td>
<td>0</td>
<td>*****</td>
</tr>
<tr>
<td>Forest</td>
<td>0.008</td>
<td>220</td>
<td>*****</td>
</tr>
<tr>
<td>Urban1</td>
<td>*****</td>
<td>*****</td>
<td>0.2</td>
</tr>
<tr>
<td>Urban2</td>
<td>*****</td>
<td>*****</td>
<td>0.1</td>
</tr>
<tr>
<td>Feedlots</td>
<td>*****</td>
<td>*****</td>
<td>0</td>
</tr>
<tr>
<td>Other1</td>
<td>0</td>
<td>0</td>
<td>*****</td>
</tr>
<tr>
<td>Other2</td>
<td>0</td>
<td>0</td>
<td>*****</td>
</tr>
<tr>
<td>Other3</td>
<td>0</td>
<td>0</td>
<td>*****</td>
</tr>
<tr>
<td>Precipitation</td>
<td>*****</td>
<td>*****</td>
<td>0.05</td>
</tr>
</tbody>
</table>

\[P\text{-enrichment ratio} = 2 \]

Nitrogen Concentration Estimates

<table>
<thead>
<tr>
<th>Land Use Category</th>
<th>Dissolved</th>
<th>Sed-Attach</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agriculture1</td>
<td>2.8</td>
<td>500</td>
<td>*****</td>
</tr>
<tr>
<td>Agriculture2</td>
<td>1.8</td>
<td>500</td>
<td>*****</td>
</tr>
<tr>
<td>Agriculture3</td>
<td>0</td>
<td>0</td>
<td>*****</td>
</tr>
<tr>
<td>Agriculture4</td>
<td>0</td>
<td>0</td>
<td>*****</td>
</tr>
<tr>
<td>Agriculture5</td>
<td>0</td>
<td>0</td>
<td>*****</td>
</tr>
<tr>
<td>Forest</td>
<td>0.19</td>
<td>500</td>
<td>*****</td>
</tr>
<tr>
<td>Urban1</td>
<td>*****</td>
<td>*****</td>
<td>1.5</td>
</tr>
<tr>
<td>Urban2</td>
<td>*****</td>
<td>*****</td>
<td>1.75</td>
</tr>
<tr>
<td>Feedlots</td>
<td>*****</td>
<td>*****</td>
<td>0</td>
</tr>
<tr>
<td>Other1</td>
<td>0</td>
<td>0</td>
<td>*****</td>
</tr>
<tr>
<td>Other2</td>
<td>0</td>
<td>0</td>
<td>*****</td>
</tr>
<tr>
<td>Other3</td>
<td>0</td>
<td>0</td>
<td>*****</td>
</tr>
<tr>
<td>Precipitation</td>
<td>*****</td>
<td>*****</td>
<td>0.1</td>
</tr>
</tbody>
</table>

\[N\text{-enrichment ratio} = 2 \]
Phosphorus Loading Estimates - By Category

<table>
<thead>
<tr>
<th>Category</th>
<th>Loading (kg/yr)</th>
<th>Expected</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agriculture</td>
<td></td>
<td>546.93439</td>
</tr>
<tr>
<td>Forest</td>
<td></td>
<td>7.2419592</td>
</tr>
<tr>
<td>Urban</td>
<td></td>
<td>19.635</td>
</tr>
<tr>
<td>Feedlots</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Precipitation</td>
<td></td>
<td>37.6635</td>
</tr>
<tr>
<td>Septic Tanks</td>
<td></td>
<td>24.375</td>
</tr>
<tr>
<td>Point Sources</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Other</td>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>

Estimated Total = 635.849855 (kg/yr)

Nitrogen Loading Estimates - By Category

<table>
<thead>
<tr>
<th>Category</th>
<th>Loading (kg/yr)</th>
<th>Expected</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agriculture</td>
<td></td>
<td>9847.0767</td>
</tr>
<tr>
<td>Forest</td>
<td></td>
<td>145.88448</td>
</tr>
<tr>
<td>Urban</td>
<td></td>
<td>158.6865</td>
</tr>
<tr>
<td>Feedlots</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Precipitation</td>
<td></td>
<td>75.327</td>
</tr>
<tr>
<td>Septic Tanks</td>
<td></td>
<td>216.125</td>
</tr>
<tr>
<td>Point Sources</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Other</td>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>

Estimated Total = 10443.0997 (kg/yr)

Predicted Lake Trophic State Variables - Based on Model Uncertainties

<table>
<thead>
<tr>
<th>Variable (units)</th>
<th>-1 Std Err</th>
<th>Predicted</th>
<th>+1 Std Err</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total P-in (mg/l)</td>
<td>0.0805</td>
<td>1.3226</td>
<td>0.0577</td>
</tr>
<tr>
<td>Total N-in (mg/l)</td>
<td>0.0387</td>
<td>0.8899</td>
<td>1.1544</td>
</tr>
<tr>
<td>Total P (mg/l)</td>
<td>0.6860</td>
<td>12.7905</td>
<td>1.4660</td>
</tr>
<tr>
<td>Total N (mg/l)</td>
<td>1.4660</td>
<td>1.0826</td>
<td>0.8282</td>
</tr>
<tr>
<td>Chlor a (ug/l)</td>
<td>1.4660</td>
<td>0.3964</td>
<td>0.5187</td>
</tr>
<tr>
<td>Secchi Depth (m)</td>
<td>1.4660</td>
<td>1.0826</td>
<td>0.8282</td>
</tr>
<tr>
<td>Prob Hypo Anoxia</td>
<td>0.3964</td>
<td>0.5187</td>
<td>0.8282</td>
</tr>
<tr>
<td>Prob BG Dominant</td>
<td>0.3964</td>
<td>0.5187</td>
<td>0.8282</td>
</tr>
<tr>
<td>THMs</td>
<td>0.3964</td>
<td>0.5187</td>
<td>0.8282</td>
</tr>
<tr>
<td>TSI</td>
<td>0.3964</td>
<td>0.5187</td>
<td>0.8282</td>
</tr>
</tbody>
</table>